12 research outputs found

    Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique

    Get PDF
    In the recent past, the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported. This paper presents the experimental study on the behaviour of model strip footing resting on sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings. The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect. It is found that for the same amount of reinforcement material, the wraparound reinforced model resulted in less settlement in comparison to planar reinforced models. The efficiency of wraparound reinforced model increased with the increase in load amplitude and the rate of total cumulative settlement substantially decreased with the increase in number of load cycles. The wraparound reinforced model has shown about 45% lower average total settlement in comparison to unreinforced model, while the double-layer reinforced model has about 41% lower average total settlement at the cost of approximately twice the material and 1.5 times the occupied land width ratio. Moreover, wraparound models have shown much greater stability in comparison to their counterpart models when subjected to incremental repeated loading. © 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Performance analysis of multi-spindle drilling of Al2024 with TiN and TiCN coated drills using experimental and artificial neural networks technique

    Get PDF
    Multi-spindle drilling simultaneously produces multiple holes to save time and increase productivity. The assessment of hole quality is important in any drilling process and is influenced by characteristics of the cutting tool, drilling parameters and machine capacity. This study investigates the drilling performance of uncoated carbide, and coated carbide (TiN and TiCN) drills when machining Al2024 aluminium alloy. Thrust force and characteristics of hole quality, such as the presence of burrs and surface roughness, were evaluated. The results show that the uncoated carbide drills performed better than the TiN and TiCN coated tools at low spindle speeds, while TiCN coated drills produced better hole quality at higher spindle speeds. The TiN coated drills gave the highest thrust force and poorest hole quality when compared with the uncoated carbide and TiCN coated carbide drills. Additionally, a multi-layer perceptron neural network model was developed, which could be useful for industries and manufacturing engineers for predicting the surface roughness in multi-hole simultaneous drilling processe

    Intrusion detection based on bidirectional long short-term memory with attention mechanism

    Get PDF
    With the recent developments in the Internet of Things (IoT), the amount of data collected has expanded tremendously, resulting in a higher demand for data storage, computational capacity, and real-time processing capabilities. Cloud computing has traditionally played an important role in establishing IoT. However, fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility, location awareness, heterogeneity, scalability, low latency, and geographic distribution. However, IoT networks are vulnerable to unwanted assaults because of their open and shared nature. As a result, various fog computing-based security models that protect IoT networks have been developed. A distributed architecture based on an intrusion detection system (IDS) ensures that a dynamic, scalable IoT environment with the ability to disperse centralized tasks to local fog nodes and which successfully detects advanced malicious threats is available. In this study, we examined the time-related aspects of network traffic data. We presented an intrusion detection model based on a two-layered bidirectional long short-term memory (Bi-LSTM) with an attention mechanism for traffic data classification verified on the UNSW-NB15 benchmark dataset. We showed that the suggested model outperformed numerous leading-edge Network IDS that used machine learning models in terms of accuracy, precision, recall and F1 score

    Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling

    Get PDF
    Settlement prediction of geosynthetic-reinforced soil (GRS) abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers. Hence, in this paper, a novel hybrid artificial intelligence (AI)-based model was developed by the combination of artificial neural network (ANN) and Harris hawks’ optimisation (HHO), that is, ANN-HHO, to predict the settlement of the GRS abutments. Five other robust intelligent models such as support vector regression (SVR), Gaussian process regression (GPR), relevance vector machine (RVM), sequential minimal optimisation regression (SMOR), and least-median square regression (LMSR) were constructed and compared to the ANN-HHO model. The predictive strength, relalibility and robustness of the model were evaluated based on rigorous statistical testing, ranking criteria, multi-criteria approach, uncertainity analysis and sensitivity analysis (SA). Moreover, the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature. The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models. Therefore, it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments. Finally, the model has been converted into a simple mathematical formulation for easy hand calculations, and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations

    Load-settlement investigation of geosynthetic-reinforced soil using experimental, analytical, and intelligent modelling techniques

    No full text
    During the past five decades, numerous studies have been conducted to investigate the load-settlement behaviour of geosynthetic-reinforced soil. The main advantage of reinforced soil foundations are the increase in the bearing capacity and decrease in the settlement. Whereas, for pavement foundation design, the strength of the subgrade soil is often measured in terms of California bearing ratio (CBR). The researchers have suggested various methods to improve the quality of geosynthetic-reinforced foundations soils. In the recent past, the wraparound geosynthetic reinforcement technique has been proposed to strengthen the foundation soil effectively. However, there are several research gaps in the area; for example, there has been no analytical solution for estimating the ultimate bearing capacity of wraparound reinforced foundations, and there has been no evaluation of this technique under repeated loading conditions. Similarly, for planar geosynthetic-reinforced soil foundations, the prediction of load-settlement behaviour also requires more attention. The advent of artificial intelligence (AI) based modelling techniques has made many traditional approaches antiquated. Despite this, there is limited research on using AI techniques to derive mathematical expressions for predicting the load-settlement behaviour of reinforced soil foundations or the strength of reinforced subgrade soil. This research is undertaken to examine the load-settlement behaviour of geosynthetic-reinforced foundation soils using experimental, analytical, and intelligent modelling methods. For this purpose, extensive laboratory measurements, analytical, numerical and AI-based modelling and analysis have been conducted to: (i) derive theoretical expression to estimate the ultimate bearing capacity of footing resting on soil bed strengthened by wraparound reinforcement technique; (ii) using detail experimental study, present the effectiveness of wraparound reinforcement for improving the load-settlement characteristics of sandy soil under repeated loading conditions; (iii) to build the executable artificial intelligence-based or computationally intelligent soft computing models and converting them into simple mathematical equations for estimating the (a) ultimate bearing capacity of reinforced soil foundations; (b) settlement at peak footing loads; (c) strength (California bearing ratio) of geosynthetic-reinforced subgrade soil; and (iv) to examine and predict the settlement of geosynthetic-reinforced soil foundations (GRSF) under service loading condition using novel hybrid approach, that is, finite element modelling (FEM) and AI modelling. In the analytical phase, a theoretical expression has been developed for estimating the ultimate bearing capacity of strip footing resting on soil bed reinforced with the geosynthetic layer having the wraparound ends. The wraparound ends of the geosynthetic reinforcement are considered to provide the shearing resistance at the soil-geosynthetic interface as well as the passive resistance due to confinement of soil by the geosynthetic reinforcement. The values of ultimate load-bearing capacity determined by using the developed analytical expression have predicted values closer to the model studies reported in the literature, with a difference in the range of 0% to 25% with an average difference of 10%. In the experimental phase, model footing load tests have been conducted on strip footing resting on a sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings. The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect. The effect of repeated load amplitude and the number of cycles, and the effect of reinforcement parameters, such as number of layers, reinforcement width, lap-length ratio and planar width of wraparound, were investigated, and their potential effect on the load-settlement behaviour has been studied. The wraparound reinforced model has shown about 45% lower average total settlement than the unreinforced model. In comparison, the double-layer reinforced model has about 41% at the cost of twice the material and 1.5 times the occupied land width ratio. Additionally, for lower settlement levels (s/B ≤ 5%), the wraparound geotextile with a smaller occupied land width ratio (bp/B = 3.5) has performed well in comparison to the wraparound with a slightly larger occupied land width ratio (bp/B = 4). However, the wraparound with occupied width ratio of 4 provides more stability to the foundation soil for higher settlement levels. The performance of the fully wrapped model (bp/B = 2.8) is more similar to that of the planar double-layer reinforced model (b/B = 4); however, it is noted that even the fully wrapped model outperforms the planar single-layer reinforced model with the same amount of geotextile and 50% less occupied land width For data analytic methods, first historical data has been collected to build the various machine learning (ML) models, and then detailed comparison has been presented among the ML-based models and with other available theoretical methods. A comprehensive study was conducted for each model to choose its structure, optimisation, and tuning of hyperparameters and its interpretation in the form of mathematical expressions. The forecasting strength of the models was assessed through a cross-validation approach, rigorous statistical testing, multi-criteria approach, and external validation process. The traditional statistical indices such as coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percent deviation (MAPD); along with several other modern model performance indicators, were utilised to evaluate the accuracy of the developed models. For ultimate bearing capacity (UBC) estimation, the performance of the extreme learning machine (ELM) and TreeNet models has shown a good degree of prediction accuracy in comparison with traditional methods over the test dataset. However, the overall performance of the ELM model (R2 = 0.9586, MAPD=12.8%) was better than that of the TreeNet model (R2 = 0.9147, MAPD =17.2%). Similarly, for settlement estimation at peak footing loads, multivariate adaptive regression splines (MARS) modelling technique has outperformed (R2 = 0.974, RMSE = 1.19 mm, and MAPD = 7.19%) several other robust AI-based models, namely ELM, support vector regression (SVR), Gaussian process regression (GPR), and stochastic gradient boosting trees (SGBT). For CBR, the competency and reliability of the several intelligent models such as artificial neural network (ANN), least median of squares regression (LMSR), GPR, elastic net regularization regression (ENRR), lazy K-star (LKS), M5 model trees, alternating model trees (AMT), and random forest (RF). Among all the intelligent modelling techniques, ANN (R2 = 0.944, RMSE = 1.74, and MAE = 1.27) and LKS (R2 = 0.955, RMSE = 1.52, and MAE = 1.04) has achieved the highest ranking score of 35 and 40, respectively, in predicting the CBR of geosynthetic-reinforced soil. Moreover, for UBC and settlement at peak footing loads, new model footing load tests, and for strength of reinforced subgrade soil, new CBR tests were also conducted to verify the predictive veracity of the developed AI-based models. For predicting the settlement behaviour of GRSF under various service loads, an integrated numerical-artificial intelligence approach was utilised. First, the large-scale footing load tests were simulated using the FEM technique. At the second stage, a detailed parametric study was conducted to find the effect of footing-, geosynthetic- and soil strength- parameters on the settlement of GRSF under various service loads. Afterward, a novel evolutionary artificial intelligence model, that is, grey-wolf optimised artificial neural network (ANN-GWO), was developed and translated to the simple mathematical equation for estimating the load-settlement behaviour of GRSF. The results of this study indicate that the proposed ANN-GWO model predict the settlement of GRSF with high accuracy for training (RMSE = 0.472 mm, MAE = 0.833, R2 = 0.982), and testing (RMSE = 0.612 mm, MAE = 0.363, R2 = 0.962,) dataset. Furthermore, the predictive veracity of the model was verified by detailed and rigorous statistical testing and against several independent scientific studies as reported in the literature. This work is practically valuable for understanding and predicting the load-settlement behaviour of reinforced soil foundations and applies to traditional planar geosynthetic-reinforced and as well as recently developed wraparound geosynthetic-reinforced foundation soil technique. For wraparound reinforced soil foundations, the analytical expression will be helpful in the estimation of ultimate bearing capacity, and experimental study shows the beneficial effects of such foundations systems in terms of enhancement in bearing capacity and reduction in the settlement, and economic benefits in terms of saving land area and amount of geosynthetic, under repeated loading conditions. Moreover, the developed AI-based models and mathematical expressions will be helpful for the practitioners in predicting the strength and settlement of reinforced soil in an effective and intelligent way and will be beneficial in the broader understanding of embedding the intelligent modelling techniques with geosynthetic-reinforced soil (GRS) technology for the automation in construction projects

    Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique

    Get PDF
    In order to ensure safe and sustainable design of geosynthetic-reinforced soil foundation (GRSF), settlement prediction is a challenging task for practising civil/geotechnical engineers. In this paper, a new hybrid technique for predicting the settlement of GRSF has been proposed based on the combination of evolutionary algorithm, that is, grey-wolf optimisation (GWO) and artificial neural network (ANN), abbreviated as ANN-GWO model. For this purpose, the reliable pertinent data were generated through numerical simulations conducted on validated large-scale 3-D finite element model. The predictive power of the model was assessed using various well-established statistical indices, and also validated against several independent scientific studies as reported in literature. Furthermore, the sensitivity analysis was conducted to examine the robustness and reliability of the model. The results as obtained have indicated that the developed hybrid ANN-GWO model can estimate the maximum settlement of GRSF under service loads in a reliable and intelligent way, and thus, can be deployed as a predictive tool for the preliminary design of GRSF. Finally, the model was translated into functional relationship which can be executed without the need of any expensive computer-based program

    An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil

    Get PDF
    In the recent times, the use of geosynthetic-reinforced soil (GRS) technology has become popular for constructing safe and sustainable pavement structures. The strength of the subgrade soil is routinely assessed in terms of its California bearing ratio (CBR). However, in the past, no effort was made to develop a method for evaluating the CBR of the reinforced subgrade soil. The main aim of this paper is to explore and appraise the competency of the several intelligent models such as artificial neural network (ANN), least median of squares regression, Gaussian processes regression, elastic net regularisation regression, lazy K-star, M-5 model trees, alternating model trees and random forest in estimating the CBR of reinforced soil. For this, all the models were calibrated and validated using the reliable pertinent historical data. The prognostic veracity of all the tools mentioned supra were assessed using the well-established traditional statistical indices, external model evaluation technique, multi-criteria assessment approach and independent experimental dataset. Due to the overall excellent performance of ANN, the model was converted into a trackable functional relationship to estimate the CBR of reinforced soil. Finally, the sensitivity analysis was performed to find the strength and relationship of the used parameters on the CBR value
    corecore